3.440 \(\int \cos (c+d x) (a+b \cos (c+d x))^4 \, dx\)

Optimal. Leaf size=170 \[ \frac {\left (3 a^2+4 b^2\right ) \sin (c+d x) (a+b \cos (c+d x))^2}{15 d}+\frac {a b \left (6 a^2+29 b^2\right ) \sin (c+d x) \cos (c+d x)}{30 d}+\frac {1}{2} a b x \left (4 a^2+3 b^2\right )+\frac {2 \left (3 a^4+28 a^2 b^2+4 b^4\right ) \sin (c+d x)}{15 d}+\frac {\sin (c+d x) (a+b \cos (c+d x))^4}{5 d}+\frac {a \sin (c+d x) (a+b \cos (c+d x))^3}{5 d} \]

[Out]

1/2*a*b*(4*a^2+3*b^2)*x+2/15*(3*a^4+28*a^2*b^2+4*b^4)*sin(d*x+c)/d+1/30*a*b*(6*a^2+29*b^2)*cos(d*x+c)*sin(d*x+
c)/d+1/15*(3*a^2+4*b^2)*(a+b*cos(d*x+c))^2*sin(d*x+c)/d+1/5*a*(a+b*cos(d*x+c))^3*sin(d*x+c)/d+1/5*(a+b*cos(d*x
+c))^4*sin(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 170, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2753, 2734} \[ \frac {2 \left (28 a^2 b^2+3 a^4+4 b^4\right ) \sin (c+d x)}{15 d}+\frac {\left (3 a^2+4 b^2\right ) \sin (c+d x) (a+b \cos (c+d x))^2}{15 d}+\frac {a b \left (6 a^2+29 b^2\right ) \sin (c+d x) \cos (c+d x)}{30 d}+\frac {1}{2} a b x \left (4 a^2+3 b^2\right )+\frac {\sin (c+d x) (a+b \cos (c+d x))^4}{5 d}+\frac {a \sin (c+d x) (a+b \cos (c+d x))^3}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a + b*Cos[c + d*x])^4,x]

[Out]

(a*b*(4*a^2 + 3*b^2)*x)/2 + (2*(3*a^4 + 28*a^2*b^2 + 4*b^4)*Sin[c + d*x])/(15*d) + (a*b*(6*a^2 + 29*b^2)*Cos[c
 + d*x]*Sin[c + d*x])/(30*d) + ((3*a^2 + 4*b^2)*(a + b*Cos[c + d*x])^2*Sin[c + d*x])/(15*d) + (a*(a + b*Cos[c
+ d*x])^3*Sin[c + d*x])/(5*d) + ((a + b*Cos[c + d*x])^4*Sin[c + d*x])/(5*d)

Rule 2734

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((2*a*c
+ b*d)*x)/2, x] + (-Simp[((b*c + a*d)*Cos[e + f*x])/f, x] - Simp[(b*d*Cos[e + f*x]*Sin[e + f*x])/(2*f), x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 2753

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Simp[
b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \cos (c+d x) (a+b \cos (c+d x))^4 \, dx &=\frac {(a+b \cos (c+d x))^4 \sin (c+d x)}{5 d}+\frac {1}{5} \int (4 b+4 a \cos (c+d x)) (a+b \cos (c+d x))^3 \, dx\\ &=\frac {a (a+b \cos (c+d x))^3 \sin (c+d x)}{5 d}+\frac {(a+b \cos (c+d x))^4 \sin (c+d x)}{5 d}+\frac {1}{20} \int (a+b \cos (c+d x))^2 \left (28 a b+4 \left (3 a^2+4 b^2\right ) \cos (c+d x)\right ) \, dx\\ &=\frac {\left (3 a^2+4 b^2\right ) (a+b \cos (c+d x))^2 \sin (c+d x)}{15 d}+\frac {a (a+b \cos (c+d x))^3 \sin (c+d x)}{5 d}+\frac {(a+b \cos (c+d x))^4 \sin (c+d x)}{5 d}+\frac {1}{60} \int (a+b \cos (c+d x)) \left (4 b \left (27 a^2+8 b^2\right )+4 a \left (6 a^2+29 b^2\right ) \cos (c+d x)\right ) \, dx\\ &=\frac {1}{2} a b \left (4 a^2+3 b^2\right ) x+\frac {2 \left (3 a^4+28 a^2 b^2+4 b^4\right ) \sin (c+d x)}{15 d}+\frac {a b \left (6 a^2+29 b^2\right ) \cos (c+d x) \sin (c+d x)}{30 d}+\frac {\left (3 a^2+4 b^2\right ) (a+b \cos (c+d x))^2 \sin (c+d x)}{15 d}+\frac {a (a+b \cos (c+d x))^3 \sin (c+d x)}{5 d}+\frac {(a+b \cos (c+d x))^4 \sin (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.49, size = 133, normalized size = 0.78 \[ \frac {30 \left (8 a^4+36 a^2 b^2+5 b^4\right ) \sin (c+d x)+b \left (480 a^3 c+480 a^3 d x+5 \left (24 a^2 b+5 b^3\right ) \sin (3 (c+d x))+240 a \left (a^2+b^2\right ) \sin (2 (c+d x))+30 a b^2 \sin (4 (c+d x))+360 a b^2 c+360 a b^2 d x+3 b^3 \sin (5 (c+d x))\right )}{240 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*(a + b*Cos[c + d*x])^4,x]

[Out]

(30*(8*a^4 + 36*a^2*b^2 + 5*b^4)*Sin[c + d*x] + b*(480*a^3*c + 360*a*b^2*c + 480*a^3*d*x + 360*a*b^2*d*x + 240
*a*(a^2 + b^2)*Sin[2*(c + d*x)] + 5*(24*a^2*b + 5*b^3)*Sin[3*(c + d*x)] + 30*a*b^2*Sin[4*(c + d*x)] + 3*b^3*Si
n[5*(c + d*x)]))/(240*d)

________________________________________________________________________________________

fricas [A]  time = 1.04, size = 121, normalized size = 0.71 \[ \frac {15 \, {\left (4 \, a^{3} b + 3 \, a b^{3}\right )} d x + {\left (6 \, b^{4} \cos \left (d x + c\right )^{4} + 30 \, a b^{3} \cos \left (d x + c\right )^{3} + 30 \, a^{4} + 120 \, a^{2} b^{2} + 16 \, b^{4} + 4 \, {\left (15 \, a^{2} b^{2} + 2 \, b^{4}\right )} \cos \left (d x + c\right )^{2} + 15 \, {\left (4 \, a^{3} b + 3 \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{30 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))^4,x, algorithm="fricas")

[Out]

1/30*(15*(4*a^3*b + 3*a*b^3)*d*x + (6*b^4*cos(d*x + c)^4 + 30*a*b^3*cos(d*x + c)^3 + 30*a^4 + 120*a^2*b^2 + 16
*b^4 + 4*(15*a^2*b^2 + 2*b^4)*cos(d*x + c)^2 + 15*(4*a^3*b + 3*a*b^3)*cos(d*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

giac [A]  time = 0.64, size = 134, normalized size = 0.79 \[ \frac {b^{4} \sin \left (5 \, d x + 5 \, c\right )}{80 \, d} + \frac {a b^{3} \sin \left (4 \, d x + 4 \, c\right )}{8 \, d} + \frac {1}{2} \, {\left (4 \, a^{3} b + 3 \, a b^{3}\right )} x + \frac {{\left (24 \, a^{2} b^{2} + 5 \, b^{4}\right )} \sin \left (3 \, d x + 3 \, c\right )}{48 \, d} + \frac {{\left (a^{3} b + a b^{3}\right )} \sin \left (2 \, d x + 2 \, c\right )}{d} + \frac {{\left (8 \, a^{4} + 36 \, a^{2} b^{2} + 5 \, b^{4}\right )} \sin \left (d x + c\right )}{8 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))^4,x, algorithm="giac")

[Out]

1/80*b^4*sin(5*d*x + 5*c)/d + 1/8*a*b^3*sin(4*d*x + 4*c)/d + 1/2*(4*a^3*b + 3*a*b^3)*x + 1/48*(24*a^2*b^2 + 5*
b^4)*sin(3*d*x + 3*c)/d + (a^3*b + a*b^3)*sin(2*d*x + 2*c)/d + 1/8*(8*a^4 + 36*a^2*b^2 + 5*b^4)*sin(d*x + c)/d

________________________________________________________________________________________

maple [A]  time = 0.04, size = 138, normalized size = 0.81 \[ \frac {\frac {b^{4} \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}+4 a \,b^{3} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+2 a^{2} b^{2} \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+4 a^{3} b \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a^{4} \sin \left (d x +c \right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+b*cos(d*x+c))^4,x)

[Out]

1/d*(1/5*b^4*(8/3+cos(d*x+c)^4+4/3*cos(d*x+c)^2)*sin(d*x+c)+4*a*b^3*(1/4*(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x
+c)+3/8*d*x+3/8*c)+2*a^2*b^2*(2+cos(d*x+c)^2)*sin(d*x+c)+4*a^3*b*(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c)+a^4
*sin(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.67, size = 133, normalized size = 0.78 \[ \frac {120 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} a^{3} b - 240 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} a^{2} b^{2} + 15 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} a b^{3} + 8 \, {\left (3 \, \sin \left (d x + c\right )^{5} - 10 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )\right )} b^{4} + 120 \, a^{4} \sin \left (d x + c\right )}{120 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))^4,x, algorithm="maxima")

[Out]

1/120*(120*(2*d*x + 2*c + sin(2*d*x + 2*c))*a^3*b - 240*(sin(d*x + c)^3 - 3*sin(d*x + c))*a^2*b^2 + 15*(12*d*x
 + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*a*b^3 + 8*(3*sin(d*x + c)^5 - 10*sin(d*x + c)^3 + 15*sin(d*x
+ c))*b^4 + 120*a^4*sin(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 2.04, size = 363, normalized size = 2.14 \[ \frac {\left (2\,a^4-4\,a^3\,b+12\,a^2\,b^2-5\,a\,b^3+2\,b^4\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+\left (8\,a^4-8\,a^3\,b+32\,a^2\,b^2-2\,a\,b^3+\frac {8\,b^4}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (12\,a^4+40\,a^2\,b^2+\frac {116\,b^4}{15}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (8\,a^4+8\,a^3\,b+32\,a^2\,b^2+2\,a\,b^3+\frac {8\,b^4}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (2\,a^4+4\,a^3\,b+12\,a^2\,b^2+5\,a\,b^3+2\,b^4\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}+\frac {a\,b\,\mathrm {atan}\left (\frac {a\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (4\,a^2+3\,b^2\right )}{4\,a^3\,b+3\,a\,b^3}\right )\,\left (4\,a^2+3\,b^2\right )}{d}-\frac {a\,b\,\left (4\,a^2+3\,b^2\right )\,\left (\mathrm {atan}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )-\frac {d\,x}{2}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*(a + b*cos(c + d*x))^4,x)

[Out]

(tan(c/2 + (d*x)/2)^5*(12*a^4 + (116*b^4)/15 + 40*a^2*b^2) + tan(c/2 + (d*x)/2)^9*(2*a^4 - 4*a^3*b - 5*a*b^3 +
 2*b^4 + 12*a^2*b^2) + tan(c/2 + (d*x)/2)^3*(2*a*b^3 + 8*a^3*b + 8*a^4 + (8*b^4)/3 + 32*a^2*b^2) + tan(c/2 + (
d*x)/2)^7*(8*a^4 - 8*a^3*b - 2*a*b^3 + (8*b^4)/3 + 32*a^2*b^2) + tan(c/2 + (d*x)/2)*(5*a*b^3 + 4*a^3*b + 2*a^4
 + 2*b^4 + 12*a^2*b^2))/(d*(5*tan(c/2 + (d*x)/2)^2 + 10*tan(c/2 + (d*x)/2)^4 + 10*tan(c/2 + (d*x)/2)^6 + 5*tan
(c/2 + (d*x)/2)^8 + tan(c/2 + (d*x)/2)^10 + 1)) + (a*b*atan((a*b*tan(c/2 + (d*x)/2)*(4*a^2 + 3*b^2))/(3*a*b^3
+ 4*a^3*b))*(4*a^2 + 3*b^2))/d - (a*b*(4*a^2 + 3*b^2)*(atan(tan(c/2 + (d*x)/2)) - (d*x)/2))/d

________________________________________________________________________________________

sympy [A]  time = 2.25, size = 301, normalized size = 1.77 \[ \begin {cases} \frac {a^{4} \sin {\left (c + d x \right )}}{d} + 2 a^{3} b x \sin ^{2}{\left (c + d x \right )} + 2 a^{3} b x \cos ^{2}{\left (c + d x \right )} + \frac {2 a^{3} b \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{d} + \frac {4 a^{2} b^{2} \sin ^{3}{\left (c + d x \right )}}{d} + \frac {6 a^{2} b^{2} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} + \frac {3 a b^{3} x \sin ^{4}{\left (c + d x \right )}}{2} + 3 a b^{3} x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} + \frac {3 a b^{3} x \cos ^{4}{\left (c + d x \right )}}{2} + \frac {3 a b^{3} \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{2 d} + \frac {5 a b^{3} \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{2 d} + \frac {8 b^{4} \sin ^{5}{\left (c + d x \right )}}{15 d} + \frac {4 b^{4} \sin ^{3}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{3 d} + \frac {b^{4} \sin {\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} & \text {for}\: d \neq 0 \\x \left (a + b \cos {\relax (c )}\right )^{4} \cos {\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))**4,x)

[Out]

Piecewise((a**4*sin(c + d*x)/d + 2*a**3*b*x*sin(c + d*x)**2 + 2*a**3*b*x*cos(c + d*x)**2 + 2*a**3*b*sin(c + d*
x)*cos(c + d*x)/d + 4*a**2*b**2*sin(c + d*x)**3/d + 6*a**2*b**2*sin(c + d*x)*cos(c + d*x)**2/d + 3*a*b**3*x*si
n(c + d*x)**4/2 + 3*a*b**3*x*sin(c + d*x)**2*cos(c + d*x)**2 + 3*a*b**3*x*cos(c + d*x)**4/2 + 3*a*b**3*sin(c +
 d*x)**3*cos(c + d*x)/(2*d) + 5*a*b**3*sin(c + d*x)*cos(c + d*x)**3/(2*d) + 8*b**4*sin(c + d*x)**5/(15*d) + 4*
b**4*sin(c + d*x)**3*cos(c + d*x)**2/(3*d) + b**4*sin(c + d*x)*cos(c + d*x)**4/d, Ne(d, 0)), (x*(a + b*cos(c))
**4*cos(c), True))

________________________________________________________________________________________